Short-term Forecast Technology in Load of Electrified Railway based on Wavelet-extreme Learning Machine

نویسندگان

  • Wentao Zhang
  • Wenhua Zhao
  • Xinhui Du
چکیده

With the development of economy and the progress of science, the proportion of electrified railway load in the power gird has been keeping on increasing, which impacts the short-term forecasting in load a lot, therefore, it is very important to analyze short-term load of electrified railway forecasting. This paper analyzes the power gird load-forecasting considering the influence of the electrified railway load, and introduces wavelet mechanism for data processing based on the research of electrified railway load. The wavelet-extreme learning machine algorithm is proposed and used in the short-term forecast in load of electric railway on the platform of MATLAB. The application in the local electric power company indicates that the wavelet-extreme learning mechanism model has the features of accurate prediction, quick response, and strong practicability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short term electric load prediction based on deep neural network and wavelet transform and input selection

Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...

متن کامل

Electric load forecasting using wavelet transform and extreme learning machine

This paper proposes a novel method for load forecast, which integrates wavelet transform and extreme learning machine. In order to capture more internal features, wavelet transform is used to decompose the load series into a set of subcomponents, which are more predictable. Then all the components are separately processed by extreme learning machine. Numerical testing shows that the proposed me...

متن کامل

A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM), which combines k-Nearest Neighbor (KNN) and Ex...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

RVM with wavelet kernel combined with PSO for short-term load forecasting in electric power systems

This paper presents a new hybrid method for the short-term load forecasting in electric power systems based on particle swarm optimization (PSO) and relevance vector machine (RVM). In this method, we firstly develop a type of kernel as the kernel function of the RVM model, and then its parameter is optimized by the PSO, finally the established RVM forecast mode is applied to short-term load for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014